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Abstract

We continue to do low-dimensional K-theory, i.e., describe Ko(—), Ki(—), and K2(—), in various
settings. The main sources for this talk are nLab, Chapters IT and III of The K-book, and Chapter 1 of
Friedlander.

Definition. Let € be a category equipped with a “subcategory” co(€¢) of morphisms called cofibrations.
The pair (¥, co) is a category with cofibrations if the following conditions hold.

1. (W0) Every isomorphism in % is a cofibration.
2. (W1) There is a base point 0 in € such that the unique morphism 0 — A for every A € ob¥%.

3. (W2) We have
A— B

|

C» »y Buy C

Remark 1. We see that B[] C always exists as the pushout BUy C and that the cokernel of any i : A — B
exists as BU4 0 along A — 0. We call A — B — B/A a cofibration sequence.

Definition. A Waldhausen category € is a category with cofibrations together with a subcategory w (%) of
morphisms called weak equivalences such that every isomorphism in € is a w.e. and the following “Glueing
axiom” holds.

1. (W3) For any diagram
C+—A»——1~B

C'+— A —— B
the induced map BU4 C — B’ Uy C' is a w.e.

Definition. Let % be a Waldhausen category. Define Ky(%) as the abelian group generated by [C] for each
object C of € such that

1. [C] = [C'] if there some w.e. from C to C’

2. [C] = [B] + [C/g] for every B— C — /g

3. The weak equivalence classes of objects in % is a set.
Proposition 1.

1. [0] = 0.

2. [BIIC]=[B]+]C].

3. [BUs C]=[B]+[C]—[A].

4. [C] = 0 whenever 0 ~ C.

Example 1. Let Ry(*) denote the category of finite CW complexes. Cofibrations and weak equivalences
correspond to cellular inclusions and weak homotopy equivalences, respectively. By homology theory, we get
Ko(Ry) = Z.



Definition. if ¢ and 2 are Waldhausen, then a functor F : € — & is exact if it (a) preserves base points,
cofibrations, and weak equivalences and (b) for any A — B we have that FBUpy FC — F(BU4 C) is an
isomorphism. Note that F' induces a group map Ko(F') : Ko(%) — Ko(2).

Theorem 1. Let F': o/ — % be an exact functor. Assume the following.
1. A morphism f is a w.e. iff F(f) is a w.e.

2. For any morphism b: FA — B in %, there is some a : A — A’ in &/ and a w.e. b/ : FA' = B in &
such that b = b’ o F(a). Moreover, we may choose a to be a w.e. whenever b is a w.e.

Then F induces Ko(«/) = Ko(B).

Proof. Apply condition (2) to any 0 — B to get FA’ — B. If this is a w.e., then there is some A - A’
Hence there is a bijection between the set W of w.e. classes of objects of &/ and that in 2.

The group Ky(%) is given by the free abelian group Z[W] modulo [C] = [B] + [C/B]. Let FA — B.
Then applying condition (2) induces the diagram

«—— FA—— FA

E~l |

B c

Apply the Glueing axiom to see that F(A//A) — C/B is a w.e. Hence [C] = [B] + [C/B} holds iff [A'] =
[4] + [4/4] holds. O

Definition. Let R be a unital ring. Recall that direct limits in Modg always exist. Define K; = GL(R)??,
where GL(R) denotes colim,, GL(n, R).

Remark 2. The universal property of ab : Grp — Ab induces the universal property of K; that any
homomorphism f : GL(R) — H with H abelian has f = g o7 for some unique ¢ : K1(R) — H.

Proposition 2. Any ring map f: R — S induces a natural map GL(R) — GL(S). Hence K; is a functor
Rng — Ab.

Remark 3. Due to Whitehead, we know that the commutator subgroup [GL(R), GL(R)] is equal to E(R) =
U,, En(R), the group of elementary matrices E; j(r) for r € R and i # j. Thus, K;(R) can be viewed as the
“stabilized” group of automorphisms of the trivial projective module modulo trivial automorphisms.

Example 2. If F' is a field, then K;(F) = F*.
Proof. Tt is each to check that F,,(F) = SL,(F) for any n € N. Therefore, E(F) = SL(R). O

Proposition 3. Suppose R is commutative. Consider the sequence R* = GL(1, R) — GL(R) — K;(R).
This induces a natural split exact sequence.

1 — SKy(R) — Ki(R) 2 RX —— 1,
where SK;(R) denotes ker(det). Therefore, Ki(R) = R* x SK;(R).
Example 3. Suppose R is a Euclidean domain. Then SK;(R) =1, so that K;(R) = R*.
Lemma 1. Let D be a division ring. Then K; (D) = GL"(D)/En(D) for any n > 3.

Proof. Any invertible matrix over D is reducible (a la Gaussian elimination) to a diagonal matrix of the
form (r,1,...,1). Moreover, E,(D) < GL, (D) for each n. In particular, Dieudonné (1943) showed that

GLn(D)/En(D) EDX/(DX)/ for any n # 2. O



Lemma 2. Suppose R is Noetherian of dimension d, so that F,(R) < GL,(R) for any n > d + 2. Then
Ki(R) = GLn(R)/En(R) for any n > d + 2.
Proof. This is due to Vaserstein. O

Remark 4. Let D be a d-dimensional division algebra over the field F' := Z (D). We know that d = n? for
some integer n. By Zorn there is some maximal subfield E C D such that [E : F] = n. Then D Qp E =
M, (F), where M, denotes the n-dimensional matrix ring over E. Any field with this property is called a
splitting field for D.

Definition. Let E’ be a splitting field for D. For any r € N, the inclusions D — M, (E’) and M, (D) <
det, det,

M,(E") induce maps D* C GL,(E') — (E')* and GL,(D) — GL,.(E’') — (E')* whose images are
contained in F*. [[Why?]] The induced maps are called the reduced norms Nyeq for D.
Example 4. If D = H, then Nyqq is the square of the usual norm. It induces an isomorphism K (H) & RJXF.

Proposition 4. Let R be a commutative Banach algebra over R or C. Recall that GL, (R) and SL,,(R) are
topological groups as subspaces of R™. We have that E,(R) is the path component of the identity matrix
I, for any n > 2.

Corollary 1. We may identify SK;(R) with the set 7o SL(R). [[Weibel takes this result as obvious, but
here is my own justification.]]

Proof. Note that E(R) < SL¢ R). By the third isomorphism theorem, we get

GL(R), (®) JSL(R), B GL(R) B

Thus, we get the short exact sequence
SL(R GL(R ~ GL(R ~
By the previous proposition, we know that SL(R)/E( R) = 7y SL(R), giving the short exact sequence.

1 — mSL(R) —— Ki(R) %% RX —— 1.

1

Example 5. If X is compact, then SK;(R¥) < [X,SL(R)] & [X,S0] and SK;(C¥) <« [X,SL(C)]
[X,SUJ. In particular, SK; (RSI) & m SO = Cs.

Remark 5. Let P be a finitely generated projective R-module. Each isomorphism P & @ = R™ induces
a group map Aut(P) — Aut(P) & Aut(Q) = Aut(R") = GL,(R). The group map Aut(P) — GL(R)
is independent of the choice of isomorphism up to inner automorphism of GL(R). Therefore, there is a
well-defined homomorphism @ : Aut(R) — K;(R).

Lemma 3. Suppose that R is commutative and T is an R-algebra. Then K;(T) has a natural module
structure over Ko(R).

Proof. By the previous remark, for any P € P(R) and m € N, there is a homomorphism ® : Aut(P®7T™) —
Ki(R®T). For any 8 € GL,,(T), define [P]- 8 = ®(1p ® 8). This action factors through Ky(R) and
K(T), inducing an operation Ko(R) x K1(T) — K1(R® S). Now, since T is an R-algebra, there is a ring
map R® T — T. The induced composite Ko(R) x K1(T) = K1 (R® T) — K1(T) is the desired module
structure. O

Theorem 2. By homology theory, one can show that Ki(R) is determined by the category P(R). Thus, if
R and S are Morita equivalent, then K;(R) & K;(R).



Theorem 3. Let 7 be a finitely generated group. Define the first Whitehead group Whq(w) of 7 as the
cokernel of the map = x {1} — K;(Z[n]) given by (g,£1) — (£g). Then a homotopy equivalence of
finite CW-complexes with fundamental group 7 is a simple homotopy equivalence iff it vanishes under the
Whitehead torsion T, which is a certain function from continuous maps to Why (7).

Theorem 4. (The s-cobordism theorem) Suppose that W, M, and N are compact PL-manifolds and that
W is a cobordism of M and N. Then if dim(M) > 5, it follows that (W, M, N) = (M x [0,1], M x 0, M x 1)
iff T =0.

Corollary 2. Let A denote the disjoint union of W, CM, and CN. Then N is PL-homeomorphic to XM
iff 7 =0, even though they are homeomorphic as spaces.

Corollary 3. The Generalized Poincaré Conjecture.

Definition. Let I is an ideal in R. Define GL(I) as the kernel of the map GL(R) — GL(R/I). Moreover,
define E(R,I) as the smallest normal subgroup of E(R) that contains E; ;(z) for r € I and ¢ # j.

Proposition 5. [GL(I),GL(I)] C E(R,I) <GL(I)
Definition. The relative group K;(R,I) is the the abelian group GL(I)/E(R I)

Remark 6. Swan has shown that a ring homomorphism f : R — S that maps the ideal I isomorphically to
the ideal J need not induce an isomorphism K;(R,I) — K1(S,J).

Proposition 6. There is an exact sequence
Ki(R,1) — K\(R) — K1(%)) —— Ko(I) — Ko(R) — Ko(tY7) .

See II1.2.3. in Weibel.

Definition. Let n > 3 and R be a ring. The Steinberg group St, (R) is the group generated by the symbols
x;5(r) with 1 <i# j <n and r € R that satisfy the following relations.

1.
xii(r)xii(s) = zii(r + )

1 Ak QA
(@i (1), zri(8)] = < z4(rs) j=k, i#I
zpj(—sr) j#k, i=1

Remark 7. There is a natural group surjection ¢, : St,,(R) — E,(R) given by x;;(r) — E;;(r). Moreover,
there is a group map St,(R) < St,+1(R). Note that St(R) := colim,, St,(R) exists. The ¢,, thus induce a
group surjection ¢ : St(R) — E(R).

Definition. Define K3(R) = ker ¢. We have an exact sequence
1 —— Ky(R) — St(R) —2— GL(R) — Ki(R) —— 1 .

Lemma 4. K3(R) = Z(St(R)).

Proof. That Ks(R) D Z(St(R)) follows from the fact that Z(E(R)) is trivial. The reverse containment is
easy but longer. See Weibel, I11.5.2.1. O

Remark 8. K3(—): Rng — Ab is a functor.

Example 6. A Euclidean algorithm enables the following computations.



1. Ky (Z) = Cy

3. Ko(F) = Ky(Ft]) when F is a field

Theorem 5. Write K3(n, R) = ker ¢,,. Suppose that R is Noetherian of dimension d. Then Kj(n, R) =
K5(R) for any n > d + 3.

Theorem 6. By homology theory, one can show that Ka(R) is determined by the category P(R). Thus, if
R and S are Morita equivalent, then K3(R) & K(R).

Example 7. R and S := M, (R) are Morita equivalent for any n > 1, so that K;(R) = K;(M,(R)) for
i = 0,1,2. In one direction, we define F' : M — M™. In the other direction, we define G : M — eyt M
where e11 denotes the matrix with 1 in position (1,1) and O elsewhere. Define the natural isomorphism
IdMod, = G o F' by the components fas : M — {(m,0,...,0) : m € M}. Further, define the natural
isomorphism Idyeas = F o G by the components g : M — (e;; M)™ given by m — (eq1m,...,e1pm).
Hence Modg and Modg are equivalent, hence Morita equivalence as they are preadditive.

Lemma 5. Let R be a commutative Banach algebra. Then there is a surjection from Ks(R) onto m SL(R).
Proof. See Weibel, TI1.5.9. O
Example 8. There is a surjection K5(R) — 71 SL(R) = 71 SO = Cy. Hence K3(R) is nontrivial.

Theorem 7. (Matsumoto 1969) Let F be a field. Then K (F) is isomorphic to the free abelian group with
system of generators {a, b} satisfying the following relations.

1. {ac,b} = {a,b}{c, b}

2. {a,bd} = {a,b}{a,d}

3. {a,1—al=1whena#1#1—a.
The {a, b} are called Steinberg symbols.

Remark 9. Suppose A, B € E(F) commute. Write ¢(a) = A and ¢(b) = B. Then define A% B = [a,b] €
r s
K5(R). If a,b € F, we can alternatively define the Steinberg symbol {a, b} = r—t * 1

Corollary 4. K(F}) =1 for any prime p and n > 1.
Proof. The proof is a computation. See Weibel, I11.6.1.1. O
Proposition 7. If F' O Q(t), then |Ko(F)| = |F|.



