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Abstract

We continue to do low-dimensional K-theory, i.e., describe K0(−), K1(−), and K2(−), in various
settings. The main sources for this talk are nLab, Chapters II and III of The K-book, and Chapter 1 of
Friedlander.

Definition. Let C be a category equipped with a “subcategory” co(C ) of morphisms called cofibrations.
The pair (C , co) is a category with cofibrations if the following conditions hold.

1. (W0) Every isomorphism in C is a cofibration.

2. (W1) There is a base point 0 in C such that the unique morphism 0� A for every A ∈ ob C .

3. (W2) We have
A B

C B ∪A C

.

Remark 1. We see that B
∐
C always exists as the pushout B∪0C and that the cokernel of any i : A� B

exists as B ∪A 0 along A→ 0. We call A� B � B�A a cofibration sequence.

Definition. A Waldhausen category C is a category with cofibrations together with a subcategory w(C ) of
morphisms called weak equivalences such that every isomorphism in C is a w.e. and the following “Glueing
axiom” holds.

1. (W3) For any diagram
C A B

C ′ A′ B′

∼ ∼ ∼ ,

the induced map B ∪A C → B′ ∪A′ C ′ is a w.e.

Definition. Let C be a Waldhausen category. Define K0(C ) as the abelian group generated by [C] for each
object C of C such that

1. [C] = [C ′] if there some w.e. from C to C ′

2. [C] = [B] + [C�B] for every B� C � C�B
3. The weak equivalence classes of objects in C is a set.

Proposition 1.

1. [0] = 0.

2. [B
∐
C] = [B] + [C].

3. [B ∪A C] = [B] + [C]− [A].

4. [C] = 0 whenever 0 ' C.

Example 1. Let Rf (∗) denote the category of finite CW complexes. Cofibrations and weak equivalences
correspond to cellular inclusions and weak homotopy equivalences, respectively. By homology theory, we get
K0(Rf ) ∼= Z.
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Definition. if C and D are Waldhausen, then a functor F : C → D is exact if it (a) preserves base points,
cofibrations, and weak equivalences and (b) for any A� B we have that FB ∪FA FC → F (B ∪A C) is an
isomorphism. Note that F induces a group map K0(F ) : K0(C )→ K0(D).

Theorem 1. Let F : A → B be an exact functor. Assume the following.

1. A morphism f is a w.e. iff F (f) is a w.e.

2. For any morphism b : FA→ B in B, there is some a : A� A′ in A and a w.e. b′ : FA′ ∼−→ B in B
such that b = b′ ◦ F (a). Moreover, we may choose a to be a w.e. whenever b is a w.e.

Then F induces K0(A ) ∼= K0(B).

Proof. Apply condition (2) to any 0� B to get FA′ ∼−→ B. If this is a w.e., then there is some A ∼−→ A′.
Hence there is a bijection between the set W of w.e. classes of objects of A and that in B.

The group K0(B) is given by the free abelian group Z[W ] modulo [C] = [B] + [C�B]. Let FA ∼−→ B.
Then applying condition (2) induces the diagram

0 FA FA′

0 B C

∼ ∼ .

Apply the Glueing axiom to see that F (A
′
�A) → C�B is a w.e. Hence [C] = [B] + [C�B] holds iff [A′] =

[A] + [A
′
�A] holds.

Definition. Let R be a unital ring. Recall that direct limits in ModR always exist. Define K1 = GL(R)ab,
where GL(R) denotes colimn GL(n,R).

Remark 2. The universal property of ab : Grp → Ab induces the universal property of K1 that any
homomorphism f : GL(R)→ H with H abelian has f = g ◦ π for some unique g : K1(R)→ H.

Proposition 2. Any ring map f : R → S induces a natural map GL(R) → GL(S). Hence K1 is a functor
Rng→ Ab.

Remark 3. Due to Whitehead, we know that the commutator subgroup [GL(R),GL(R)] is equal to E(R) =⋃
nEn(R), the group of elementary matrices Ei,j(r) for r ∈ R and i 6= j. Thus, K1(R) can be viewed as the

“stabilized” group of automorphisms of the trivial projective module modulo trivial automorphisms.

Example 2. If F is a field, then K1(F ) = F×.

Proof. It is each to check that En(F ) ∼= SLn(F ) for any n ∈ N. Therefore, E(F ) ∼= SL(R).

Proposition 3. Suppose R is commutative. Consider the sequence R× ∼= GL(1, R) → GL(R) → K1(R).
This induces a natural split exact sequence.

1 SK1(R) K1(R) R× 1,det

where SK1(R) denotes ker(det). Therefore, K1(R) ∼= R× × SK1(R).

Example 3. Suppose R is a Euclidean domain. Then SK1(R) = 1, so that K1(R) ∼= R×.

Lemma 1. Let D be a division ring. Then K1(D) ∼= GLn(D)�En(D) for any n ≥ 3.

Proof. Any invertible matrix over D is reducible (a la Gaussian elimination) to a diagonal matrix of the
form (r, 1, . . . , 1). Moreover, En(D) E GLn(D) for each n. In particular, Dieudonné (1943) showed that
GLn(D)�En(D) ∼=

D×�(D×)′ for any n 6= 2.
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Lemma 2. Suppose R is Noetherian of dimension d, so that En(R) E GLn(R) for any n ≥ d + 2. Then
K1(R) ∼= GLn(R)�En(R) for any n ≥ d+ 2.

Proof. This is due to Vaserstein.

Remark 4. Let D be a d-dimensional division algebra over the field F := Z(D). We know that d = n2 for
some integer n. By Zorn there is some maximal subfield E ⊂ D such that [E : F ] = n. Then D ⊗F E ∼=
Mn(E), where Mn denotes the n-dimensional matrix ring over E. Any field with this property is called a
splitting field for D.

Definition. Let E′ be a splitting field for D. For any r ∈ N, the inclusions D ↪→ Mn(E′) and Mr(D) ↪→
Mnr(E′) induce maps D× ⊂ GLn(E′) det−→ (E′)× and GLr(D) → GLnr(E′)

det−→ (E′)× whose images are
contained in F ∗. [[Why?]] The induced maps are called the reduced norms Nred for D.

Example 4. If D = H, then Nred is the square of the usual norm. It induces an isomorphism K1(H) ∼= R×+.

Proposition 4. Let R be a commutative Banach algebra over R or C. Recall that GLn(R) and SLn(R) are
topological groups as subspaces of Rn2 . We have that En(R) is the path component of the identity matrix
In for any n ≥ 2.

Corollary 1. We may identify SK1(R) with the set π0 SL(R). [[Weibel takes this result as obvious, but
here is my own justification.]]

Proof. Note that E(R) ≤ SL( R). By the third isomorphism theorem, we get

GL(R)�E(R)
/SL(R)�E(R) ∼=

GL(R)�SL(R).

Thus, we get the short exact sequence

1 SL(R)�E(R)
GL(R)�E(R) ∼= K1(R) GL(R)�SL(R) ∼= R× 1

By the previous proposition, we know that SL(R)�E(R) ∼= π0 SL(R), giving the short exact sequence.

1 π0 SL(R) K1(R) R× 1det .

Example 5. If X is compact, then SK1(RX) ↔ [X,SL(R)] ∼= [X,SO] and SK1(CX) ↔ [X,SL(C)] ∼=
[X,SU]. In particular, SK1(RS1)↔ π1 SO ∼= C2.

Remark 5. Let P be a finitely generated projective R-module. Each isomorphism P ⊕ Q ∼= Rn induces
a group map Aut(P ) → Aut(P ) ⊕ Aut(Q) ∼= Aut(Rn) ∼= GLn(R). The group map Aut(P ) → GL(R)
is independent of the choice of isomorphism up to inner automorphism of GL(R). Therefore, there is a
well-defined homomorphism Φ : Aut(R)→ K1(R).

Lemma 3. Suppose that R is commutative and T is an R-algebra. Then K1(T ) has a natural module
structure over K0(R).

Proof. By the previous remark, for any P ∈ P(R) and m ∈ N, there is a homomorphism Φ : Aut(P ⊗Tm)→
K1(R ⊗ T ). For any β ∈ GLm(T ), define [P ] · β = Φ(1P ⊗ β). This action factors through K0(R) and
K1(T ), inducing an operation K0(R)×K1(T ) → K1(R ⊗ S). Now, since T is an R-algebra, there is a ring
map R ⊗ T → T . The induced composite K0(R) × K1(T ) → K1(R ⊗ T ) → K1(T ) is the desired module
structure.

Theorem 2. By homology theory, one can show that K1(R) is determined by the category P(R). Thus, if
R and S are Morita equivalent, then K1(R) ∼= K1(R).
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Theorem 3. Let π be a finitely generated group. Define the first Whitehead group Wh1(π) of π as the
cokernel of the map π × {±1} → K1(Z[π]) given by (g,±1) 7→ (±g). Then a homotopy equivalence of
finite CW-complexes with fundamental group π is a simple homotopy equivalence iff it vanishes under the
Whitehead torsion τ , which is a certain function from continuous maps to Wh1(π).

Theorem 4. (The s-cobordism theorem) Suppose that W , M , and N are compact PL-manifolds and that
W is a cobordism of M and N . Then if dim(M) ≥ 5, it follows that (W,M,N) ∼= (M × [0, 1],M × 0,M × 1)
iff τ = 0.

Corollary 2. Let A denote the disjoint union of W , CM , and CN . Then N is PL-homeomorphic to ΣM
iff τ = 0, even though they are homeomorphic as spaces.

Corollary 3. The Generalized Poincaré Conjecture.

Definition. Let I is an ideal in R. Define GL(I) as the kernel of the map GL(R) → GL(R�I). Moreover,
define E(R, I) as the smallest normal subgroup of E(R) that contains Ei,j(x) for r ∈ I and i 6= j.

Proposition 5. [GL(I),GL(I)] ⊂ E(R, I)EGL(I)

Definition. The relative group K1(R, I) is the the abelian group GL(I)�E(R, I).

Remark 6. Swan has shown that a ring homomorphism f : R→ S that maps the ideal I isomorphically to
the ideal J need not induce an isomorphism K1(R, I)→ K1(S, J).

Proposition 6. There is an exact sequence

K1(R, I) K1(R) K1(R�I) K0(I) K0(R) K0(R�I) .

See III.2.3. in Weibel.

Definition. Let n ≥ 3 and R be a ring. The Steinberg group Stn(R) is the group generated by the symbols
xij(r) with 1 ≤ i 6= j ≤ n and r ∈ R that satisfy the following relations.

1.
xij(r)xij(s) = xij(r + s)

2.

[xij(r), xkl(s)] =


1 j 6= k, i 6= l

xil(rs) j = k, i 6= l

xkj(−sr) j 6= k, i = l
.

Remark 7. There is a natural group surjection φn : Stn(R)→ En(R) given by xij(r) 7→ Eij(r). Moreover,
there is a group map Stn(R) ↪→ Stn+1(R). Note that St(R) := colimn Stn(R) exists. The φn thus induce a
group surjection φ : St(R)→ E(R).

Definition. Define K2(R) = kerφ. We have an exact sequence

1 K2(R) St(R) GL(R) K1(R) 1φ
.

Lemma 4. K2(R) = Z(St(R)).

Proof. That K2(R) ⊃ Z(St(R)) follows from the fact that Z(E(R)) is trivial. The reverse containment is
easy but longer. See Weibel, III.5.2.1.

Remark 8. K2(−) : Rng→ Ab is a functor.

Example 6. A Euclidean algorithm enables the following computations.
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1. K2(Z) ∼= C2

2. K2(Z[i]) = 1

3. K2(F ) ∼= K2(F [t]) when F is a field

Theorem 5. Write K2(n,R) = kerφn. Suppose that R is Noetherian of dimension d. Then K2(n,R) ∼=
K2(R) for any n ≥ d+ 3.

Theorem 6. By homology theory, one can show that K2(R) is determined by the category P(R). Thus, if
R and S are Morita equivalent, then K2(R) ∼= K2(R).

Example 7. R and S := Mn(R) are Morita equivalent for any n ≥ 1, so that Ki(R) ∼= Ki(Mn(R)) for
i = 0, 1, 2. In one direction, we define F : M 7→ Mn. In the other direction, we define G : M 7→ e11M
where e11 denotes the matrix with 1 in position (1, 1) and 0 elsewhere. Define the natural isomorphism
IdModR

⇒ G ◦ F by the components fM : M → {(m, 0, . . . , 0) : m ∈ M}. Further, define the natural
isomorphism IdModS

⇒ F ◦ G by the components gM : M → (e11M)n given by m 7→ (e11m, . . . , e1nm).
Hence ModR and ModS are equivalent, hence Morita equivalence as they are preadditive.

Lemma 5. Let R be a commutative Banach algebra. Then there is a surjection from K2(R) onto π1 SL(R).

Proof. See Weibel, III.5.9.

Example 8. There is a surjection K2(R)→ π1 SL( R) ∼= π1 SO ∼= C2. Hence K2(R) is nontrivial.

Theorem 7. (Matsumoto 1969) Let F be a field. Then K2(F ) is isomorphic to the free abelian group with
system of generators {a, b} satisfying the following relations.

1. {ac, b} = {a, b}{c, b}

2. {a, bd} = {a, b}{a, d}

3. {a, 1− a} = 1 when a 6= 1 6= 1− a.

The {a, b} are called Steinberg symbols.

Remark 9. Suppose A,B ∈ E(F ) commute. Write φ(a) = A and φ(b) = B. Then define AFB = [a, b] ∈

K2(R). If a, b ∈ F , we can alternatively define the Steinberg symbol {a, b} =

r r−1

1

F
s 1

s−1

.

Corollary 4. K2(Fnp ) = 1 for any prime p and n ≥ 1.

Proof. The proof is a computation. See Weibel, III.6.1.1.

Proposition 7. If F ⊃ Q(t), then |K2(F )| = |F |.
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