Perry Hart Homotopy and K-theory seminar Talks #10 October 24, 2018

Abstract

We continue to do low-dimensional K-theory, i.e., describe $K_0(-)$, $K_1(-)$, and $K_2(-)$, in various settings. The main sources for this talk are nLab, Chapters II and III of *The K-book*, and Chapter 1 of Friedlander.

Definition. Let \mathscr{C} be a category equipped with a "subcategory" $co(\mathscr{C})$ of morphisms called *cofibrations*. The pair (\mathscr{C}, co) is a *category with cofibrations* if the following conditions hold.

- 1. (W0) Every isomorphism in \mathscr{C} is a cofibration.
- 2. (W1) There is a base point 0 in \mathscr{C} such that the unique morphism $0 \rightarrow A$ for every $A \in ob \mathscr{C}$.
- 3. (W2) We have

Remark 1. We see that $B \coprod C$ always exists as the pushout $B \cup_0 C$ and that the cokernel of any $i: A \to B$ exists as $B \cup_A 0$ along $A \to 0$. We call $A \to B \twoheadrightarrow B /_A$ a cofibration sequence.

Definition. A Waldhausen category \mathscr{C} is a category with cofibrations together with a subcategory $w(\mathscr{C})$ of morphisms called *weak equivalences* such that every isomorphism in \mathscr{C} is a w.e. and the following "Glueing axiom" holds.

1. (W3) For any diagram

the induced map $B \cup_A C \to B' \cup_{A'} C'$ is a w.e.

Definition. Let \mathscr{C} be a Waldhausen category. Define $K_0(\mathscr{C})$ as the abelian group generated by [C] for each object C of \mathscr{C} such that

- 1. [C] = [C'] if there some w.e. from C to C'
- 2. $[C] = [B] + [C_{A}]$ for every $B \rightarrow C \twoheadrightarrow C_{A}$
- 3. The weak equivalence classes of objects in \mathscr{C} is a set.

Proposition 1.

1.
$$[0] = 0$$

- 2. $[B \coprod C] = [B] + [C].$
- 3. $[B \cup_A C] = [B] + [C] [A].$
- 4. [C] = 0 whenever $0 \simeq C$.

Example 1. Let $\mathcal{R}_f(*)$ denote the category of finite CW complexes. Cofibrations and weak equivalences correspond to cellular inclusions and weak homotopy equivalences, respectively. By homology theory, we get $K_0(\mathcal{R}_f) \cong \mathbb{Z}$.

Definition. if \mathscr{C} and \mathscr{D} are Waldhausen, then a functor $F : \mathscr{C} \to \mathscr{D}$ is *exact* if it (a) preserves base points, cofibrations, and weak equivalences and (b) for any $A \to B$ we have that $FB \cup_{FA} FC \to F(B \cup_A C)$ is an isomorphism. Note that F induces a group map $K_0(F) : K_0(\mathscr{C}) \to K_0(\mathscr{D})$.

Theorem 1. Let $F : \mathscr{A} \to \mathscr{B}$ be an exact functor. Assume the following.

- 1. A morphism f is a w.e. iff F(f) is a w.e.
- 2. For any morphism $b: FA \to B$ in \mathscr{B} , there is some $a: A \to A'$ in \mathscr{A} and a w.e. $b': FA' \xrightarrow{\sim} B$ in \mathscr{B} such that $b = b' \circ F(a)$. Moreover, we may choose a to be a w.e. whenever b is a w.e.

Then F induces $K_0(\mathscr{A}) \cong K_0(\mathscr{B})$.

Proof. Apply condition (2) to any $0 \rightarrow B$ to get $FA' \xrightarrow{\sim} B$. If this is a w.e., then there is some $A \xrightarrow{\sim} A'$. Hence there is a bijection between the set W of w.e. classes of objects of \mathscr{A} and that in \mathscr{B} .

The group $K_0(\mathscr{B})$ is given by the free abelian group $\mathbb{Z}[W]$ modulo $[C] = [B] + [C_B]$. Let $FA \xrightarrow{\sim} B$. Then applying condition (2) induces the diagram

Apply the Glueing axiom to see that $F(A'_A) \to C'_B$ is a w.e. Hence $[C] = [B] + [C'_B]$ holds iff $[A'] = [A] + [A'_A]$ holds.

Definition. Let R be a unital ring. Recall that direct limits in Mod_R always exist. Define $K_1 = \operatorname{GL}(R)^{\operatorname{ab}}$, where $\operatorname{GL}(R)$ denotes $\operatorname{colim}_n \operatorname{GL}(n, R)$.

Remark 2. The universal property of ab : $\mathbf{Grp} \to \mathbf{Ab}$ induces the universal property of K_1 that any homomorphism $f : \mathrm{GL}(R) \to H$ with H abelian has $f = g \circ \pi$ for some unique $g : K_1(R) \to H$.

Proposition 2. Any ring map $f : R \to S$ induces a natural map $GL(R) \to GL(S)$. Hence K_1 is a functor $\mathbf{Rng} \to \mathbf{Ab}$.

Remark 3. Due to Whitehead, we know that the commutator subgroup [GL(R), GL(R)] is equal to $E(R) = \bigcup_n E_n(R)$, the group of elementary matrices $E_{i,j}(r)$ for $r \in R$ and $i \neq j$. Thus, $K_1(R)$ can be viewed as the "stabilized" group of automorphisms of the trivial projective module modulo trivial automorphisms.

Example 2. If F is a field, then $K_1(F) = F^{\times}$.

Proof. It is each to check that $E_n(F) \cong SL_n(F)$ for any $n \in \mathbb{N}$. Therefore, $E(F) \cong SL(R)$.

Proposition 3. Suppose R is commutative. Consider the sequence $R^{\times} \cong \operatorname{GL}(1, R) \to \operatorname{GL}(R) \to K_1(R)$. This induces a natural split exact sequence.

$$1 \longrightarrow SK_1(R) \longmapsto K_1(R) \xrightarrow{\det} R^{\times} \longrightarrow 1,$$

where $SK_1(R)$ denotes ker(det). Therefore, $K_1(R) \cong R^{\times} \times SK_1(R)$.

Example 3. Suppose R is a Euclidean domain. Then $SK_1(R) = 1$, so that $K_1(R) \cong R^{\times}$.

Lemma 1. Let D be a division ring. Then $K_1(D) \cong \operatorname{GL}_n(D)/_{E_n(D)}$ for any $n \geq 3$.

Proof. Any invertible matrix over D is reducible (a la Gaussian elimination) to a diagonal matrix of the form $(r, 1, \ldots, 1)$. Moreover, $E_n(D) \trianglelefteq \operatorname{GL}_n(D)$ for each n. In particular, Dieudonné (1943) showed that $\operatorname{GL}_n(D)_{E_n(D)} \cong D^{\times}_{(D^{\times})'}$ for any $n \neq 2$.

Lemma 2. Suppose R is Noetherian of dimension d, so that $E_n(R) \leq \operatorname{GL}_n(R)$ for any $n \geq d+2$. Then $K_1(R) \cong \operatorname{GL}_n(R)/_{E_n(R)}$ for any $n \geq d+2$.

Proof. This is due to Vaserstein.

Remark 4. Let D be a d-dimensional division algebra over the field F := Z(D). We know that $d = n^2$ for some integer n. By Zorn there is some maximal subfield $E \subset D$ such that [E : F] = n. Then $D \otimes_F E \cong$ $M_n(E)$, where M_n denotes the n-dimensional matrix ring over E. Any field with this property is called a *splitting field* for D.

Definition. Let E' be a splitting field for D. For any $r \in \mathbb{N}$, the inclusions $D \hookrightarrow M_n(E')$ and $M_r(D) \hookrightarrow M_{nr}(E')$ induce maps $D^{\times} \subset \operatorname{GL}_n(E') \xrightarrow{\operatorname{det}} (E')^{\times}$ and $\operatorname{GL}_r(D) \to \operatorname{GL}_{nr}(E') \xrightarrow{\operatorname{det}} (E')^{\times}$ whose images are contained in F^* . [[Why?]] The induced maps are called the *reduced norms* N_{red} for D.

Example 4. If $D = \mathbb{H}$, then N_{red} is the square of the usual norm. It induces an isomorphism $K_1(\mathbb{H}) \cong \mathbb{R}^+_+$.

Proposition 4. Let R be a commutative Banach algebra over \mathbb{R} or \mathbb{C} . Recall that $\operatorname{GL}_n(R)$ and $\operatorname{SL}_n(R)$ are topological groups as subspaces of \mathbb{R}^{n^2} . We have that $E_n(R)$ is the path component of the identity matrix I_n for any $n \geq 2$.

Corollary 1. We may identify $SK_1(R)$ with the set $\pi_0 SL(R)$. [[Weibel takes this result as obvious, but here is my own justification.]]

Proof. Note that $E(R) \leq SL(R)$. By the third isomorphism theorem, we get

$$\operatorname{GL}(R)/\operatorname{SL}(R)/\operatorname{SL}(R)/\operatorname{SL}(R) \cong \operatorname{GL}(R)/\operatorname{SL}(R)$$

Thus, we get the short exact sequence

$$1 \longrightarrow {\rm SL}(R) / E(R) \longrightarrow {\rm GL}(R) / E(R) \cong K_1(R) \longrightarrow {\rm GL}(R) / {\rm SL}(R) \cong R^{\times} \longrightarrow 1$$

By the previous proposition, we know that $SL(R) \not _{E(R)} \cong \pi_0 SL(R)$, giving the short exact sequence.

$$1 \longrightarrow \pi_0 \operatorname{SL}(R) \longrightarrow K_1(R) \xrightarrow{\operatorname{det}} R^{\times} \longrightarrow 1 .$$

Example 5. If X is compact, then $SK_1(\mathbb{R}^X) \leftrightarrow [X, SL(\mathbb{R})] \cong [X, SO]$ and $SK_1(\mathbb{C}^X) \leftrightarrow [X, SL(\mathbb{C})] \cong [X, SU]$. In particular, $SK_1(\mathbb{R}^{S^1}) \leftrightarrow \pi_1 SO \cong C_2$.

Remark 5. Let P be a finitely generated projective R-module. Each isomorphism $P \oplus Q \cong R^n$ induces a group map $\operatorname{Aut}(P) \to \operatorname{Aut}(P) \oplus \operatorname{Aut}(Q) \cong \operatorname{Aut}(R^n) \cong \operatorname{GL}_n(R)$. The group map $\operatorname{Aut}(P) \to \operatorname{GL}(R)$ is independent of the choice of isomorphism up to inner automorphism of $\operatorname{GL}(R)$. Therefore, there is a well-defined homomorphism $\Phi : \operatorname{Aut}(R) \to K_1(R)$.

Lemma 3. Suppose that R is commutative and T is an R-algebra. Then $K_1(T)$ has a natural module structure over $K_0(R)$.

Proof. By the previous remark, for any $P \in \mathbf{P}(R)$ and $m \in \mathbb{N}$, there is a homomorphism $\Phi : \operatorname{Aut}(P \otimes T^m) \to K_1(R \otimes T)$. For any $\beta \in \operatorname{GL}_m(T)$, define $[P] \cdot \beta = \Phi(1_P \otimes \beta)$. This action factors through $K_0(R)$ and $K_1(T)$, inducing an operation $K_0(R) \times K_1(T) \to K_1(R \otimes S)$. Now, since T is an R-algebra, there is a ring map $R \otimes T \to T$. The induced composite $K_0(R) \times K_1(T) \to K_1(R \otimes T) \to K_1(T)$ is the desired module structure.

Theorem 2. By homology theory, one can show that $K_1(R)$ is determined by the category $\mathbf{P}(R)$. Thus, if R and S are Morita equivalent, then $K_1(R) \cong K_1(R)$.

Theorem 3. Let π be a finitely generated group. Define the first Whitehead group $Wh_1(\pi)$ of π as the cokernel of the map $\pi \times \{\pm 1\} \to K_1(\mathbb{Z}[\pi])$ given by $(g, \pm 1) \mapsto (\pm g)$. Then a homotopy equivalence of finite CW-complexes with fundamental group π is a simple homotopy equivalence iff it vanishes under the Whitehead torsion τ , which is a certain function from continuous maps to $Wh_1(\pi)$.

Theorem 4. (The s-cobordism theorem) Suppose that W, M, and N are compact PL-manifolds and that W is a cobordism of M and N. Then if dim $(M) \ge 5$, it follows that $(W, M, N) \cong (M \times [0, 1], M \times 0, M \times 1)$ iff $\tau = 0$.

Corollary 2. Let A denote the disjoint union of W, CM, and CN. Then N is PL-homeomorphic to ΣM iff $\tau = 0$, even though they are homeomorphic as spaces.

Corollary 3. The Generalized Poincaré Conjecture.

Definition. Let I is an ideal in R. Define GL(I) as the kernel of the map $GL(R) \to GL(R/I)$. Moreover, define E(R, I) as the smallest normal subgroup of E(R) that contains $E_{i,j}(x)$ for $r \in I$ and $i \neq j$.

Proposition 5. $[\operatorname{GL}(I), \operatorname{GL}(I)] \subset E(R, I) \trianglelefteq \operatorname{GL}(I)$

Definition. The relative group $K_1(R, I)$ is the the abelian group $\operatorname{GL}(I) / E(R, I)$.

Remark 6. Swan has shown that a ring homomorphism $f : R \to S$ that maps the ideal I isomorphically to the ideal J need not induce an isomorphism $K_1(R, I) \to K_1(S, J)$.

Proposition 6. There is an exact sequence

$$K_1(R,I) \longrightarrow K_1(R) \longrightarrow K_1(R/I) \longrightarrow K_0(I) \longrightarrow K_0(R) \longrightarrow K_0(R/I)$$
.

See III.2.3. in Weibel.

Definition. Let $n \ge 3$ and R be a ring. The *Steinberg group* $St_n(R)$ is the group generated by the symbols $x_{ij}(r)$ with $1 \le i \ne j \le n$ and $r \in R$ that satisfy the following relations.

1.

$$x_{ij}(r)x_{ij}(s) = x_{ij}(r+s)$$

2.

$$[x_{ij}(r), x_{kl}(s)] = \begin{cases} 1 & j \neq k, \quad i \neq l \\ x_{il}(rs) & j = k, \quad i \neq l \\ x_{kj}(-sr) & j \neq k, \quad i = l \end{cases}$$

Remark 7. There is a natural group surjection $\phi_n : St_n(R) \to E_n(R)$ given by $x_{ij}(r) \mapsto E_{ij}(r)$. Moreover, there is a group map $St_n(R) \hookrightarrow St_{n+1}(R)$. Note that $St(R) := \operatorname{colim}_n St_n(R)$ exists. The ϕ_n thus induce a group surjection $\phi : St(R) \to E(R)$.

Definition. Define $K_2(R) = \ker \phi$. We have an exact sequence

$$1 \longrightarrow K_2(R) \longrightarrow St(R) \stackrel{\phi}{\longrightarrow} GL(R) \longrightarrow K_1(R) \longrightarrow 1 .$$

Lemma 4. $K_2(R) = Z(St(R)).$

Proof. That $K_2(R) \supset Z(St(R))$ follows from the fact that Z(E(R)) is trivial. The reverse containment is easy but longer. See Weibel, III.5.2.1.

Remark 8. $K_2(-)$: **Rng** \rightarrow **Ab** is a functor.

Example 6. A Euclidean algorithm enables the following computations.

- 1. $K_2(\mathbb{Z}) \cong C_2$
- 2. $K_2(\mathbb{Z}[i]) = 1$
- 3. $K_2(F) \cong K_2(F[t])$ when F is a field

Theorem 5. Write $K_2(n, R) = \ker \phi_n$. Suppose that R is Noetherian of dimension d. Then $K_2(n, R) \cong K_2(R)$ for any $n \ge d+3$.

Theorem 6. By homology theory, one can show that $K_2(R)$ is determined by the category $\mathbf{P}(R)$. Thus, if R and S are Morita equivalent, then $K_2(R) \cong K_2(R)$.

Example 7. R and $S := M_n(R)$ are Morita equivalent for any $n \ge 1$, so that $K_i(R) \cong K_i(M_n(R))$ for i = 0, 1, 2. In one direction, we define $F : M \mapsto M^n$. In the other direction, we define $G : M \mapsto e_{11}M$ where e_11 denotes the matrix with 1 in position (1, 1) and 0 elsewhere. Define the natural isomorphism $\mathrm{Id}_{\mathbf{Mod}_R} \Rightarrow G \circ F$ by the components $f_M : M \to \{(m, 0, \ldots, 0) : m \in M\}$. Further, define the natural isomorphism $\mathrm{Id}_{\mathbf{Mod}_S} \Rightarrow F \circ G$ by the components $g_M : M \to (e_{11}M)^n$ given by $m \mapsto (e_{11}m, \ldots, e_{1n}m)$. Hence \mathbf{Mod}_R and \mathbf{Mod}_S are equivalent, hence Morita equivalence as they are preadditive.

Lemma 5. Let R be a commutative Banach algebra. Then there is a surjection from $K_2(R)$ onto $\pi_1 \operatorname{SL}(R)$.

Proof. See Weibel, III.5.9.

Example 8. There is a surjection $K_2(\mathbb{R}) \to \pi_1 \operatorname{SL}_(\mathbb{R}) \cong \pi_1 \operatorname{SO} \cong C_2$. Hence $K_2(\mathbb{R})$ is nontrivial.

Theorem 7. (Matsumoto 1969) Let F be a field. Then $K_2(F)$ is isomorphic to the free abelian group with system of generators $\{a, b\}$ satisfying the following relations.

- 1. $\{ac, b\} = \{a, b\}\{c, b\}$
- 2. $\{a, bd\} = \{a, b\}\{a, d\}$
- 3. $\{a, 1-a\} = 1$ when $a \neq 1 \neq 1-a$.

The $\{a, b\}$ are called *Steinberg symbols*.

Remark 9. Suppose $A, B \in E(F)$ commute. Write $\phi(a) = A$ and $\phi(b) = B$. Then define $A \bigstar B = [a, b] \in K_2(R)$. If $a, b \in F$, we can alternatively define the Steinberg symbol $\{a, b\} = \begin{bmatrix} r & & \\ & r^{-1} & \\ & & 1 \end{bmatrix} \bigstar \begin{bmatrix} s & 1 & \\ & s^{-1} \end{bmatrix}$.

Corollary 4. $K_2(\mathbb{F}_p^n) = 1$ for any prime p and $n \ge 1$.

Proof. The proof is a computation. See Weibel, III.6.1.1.

Proposition 7. If $F \supset \mathbb{Q}(t)$, then $|K_2(F)| = |F|$.